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Radial Basis Function Identifier and Pole-Shifting
Controller for Power System Stabilizer Application

G. Ramakrishna, Member, IEEE, and O. P. Malik, Life Fellow, IEEE

Abstract—Use of a mixed structure consisting of a radial basis
function (RBF) network and pole-shifting feedback controller for
power system stabilizer application is presented in this paper. The
RBF network is used to identify the time-varying parameters of the
power system. The RBF has a simple structure with a nonlinear
hidden layer which constructs local approximations to nonlinear
input-output mapping and a linear output layer. The network is
capable of fast learning and represents a nonlinear autoregressive
moving average model with exogeneous inputs (NARMAX). The
NARMAX model is transformed into a linear ARMA model every
sampling period and the pole-shift controller is used to calculate
the control signal. This process of linearizing a nonlinear system
is important because of the widespread industrial acceptance of
linear feedback controllers, availability of theoretical and prac-
tical results about robustness, and closed-loop stability. Simulation
studies carried out on a single-machine infinite bus power system
verify the effectiveness of the above approach.

Index Terms—ARMA model, pole-shift control, power system
stabilizer, radial basis function network.

1. INTRODUCTION

HE Conventional PSS (CPSS) is widely used in today’s

excitation controls [1]. It is designed for a particular op-
erating condition around which the transfer function of a lin-
earized model of the system is obtained. Usually the operating
condition where generator operates most of the time is chosen
[2]. The CPSS designed for one operating condition generally
cannot maintain the same quality of performance at other oper-
ating points [3]. In addition, the parameters of the CPSS need to
be re-tuned when applied to a new generating unit or when the
network configuration changes.

An adaptive PSS (APSS) provides a possible way to solve the
above mentioned problem relating to the CPSS [4]. Self-tuning
(or indirect adaptive control) based APSS is one of the popular
adaptive control techniques reported in the literature [5].

The work on adaptive control techniques has highlighted two
main points.

* Firstly, the techniques such as self-tuning regulators,
pole assignment (PA) methods, are generally developed
assuming that a low-order discrete model is a close ap-
proximation to the power system [3], [6], [7]. However,
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since the power system is a high-order nonlinear contin-
uous system, it is hard for the low-order discrete model
to precisely describe the dynamic behavior of the power
system. Consequently, a high-order model is used to
represent the power system, which requires a significant
amount of computation. This in turn limits the control
effect, as the system is unable to act at higher sampling
rates.

* Secondly, the control strategy should be robust and stable
for industrial use.

Neural networks (NNs) transform the inputs in a low-dimen-
sional space to high-dimensional nonlinear hidden unit space
and hence are more likely to model the nonlinear characteristics
of the power system. Furthermore, the ability of NNs to learn
makes it attractive for use in adaptive control techniques [8].
Starting with an off-line trained NN, it requires small computa-
tion time to update the weights on-line and thus track the system
operating conditions. This feature makes it a good candidate
for modeling in a real-time controller. Applications of NNs for
power system control and identification have been reported in
various publications [9]-[11]. Among all the applications, PSS
has been the most popular application area [12].

A neural network identifier to track and identify the non-
linear plant in real-time and a neuro-controller to damp power
system oscillations is described in [12]. While such neuro-adap-
tive PSSs are effective in damping mechanical oscillations, there
are unresolved issues relating to their practical use. In partic-
ular, stability and robustness cannot be proven numerically for
the neuro-controller. To overcome the above difficulty, an adap-
tive controller consisting of a RBF network identifier and the
numerically stable PS feedback control system is proposed in
this paper.

The paper is organized as follows: The controller structure
is described in Section II. The RBF identifier is explained in
Section III and a brief description of the PS control algorithm is
given in Section I'V. Simulation results with the controller as a
PSS are given in Section V.

II. CONTROLLER ARCHITECTURE

The RBF network is used for identification. RBF maps the
low-order input space consisting of past samples of the output
and the control signal into a high-dimensional nonlinear space in
the hidden layer consisting of Gaussian functions. The outputs
from the hidden layer are weighted and connected to a linear
output layer. The linear characteristic of the output layer means
that linear filtering algorithms can be applied for adjusting the
weights and can be updated rapidly [13]. Once RBF is trained
to represent the nonlinear model of the power system, the RBF
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Fig. 1. Power system with adaptive controller as PSS.

is combined with a PS controller [14] to stabilize the output.
The nonlinear relationships between the input and output of
RBF (NARMAX model) are linearized every sampling period
to obtain an ARMA relationship for use in the pole-shifting con-
troller. The unstable poles are moved inside the unit circle in the
z-plane and the control calculated so as to achieve regulation of
the system to the constant setpoint in the shortest period of time.

Structure of the adaptive controller as a PSS is shown in
Fig. 1. The adaptive PSS (APSS) consists of an RBF identifier
and a pole-shifting controller. In the proposed APSS, the gen-
erating unit is identified by a third order discrete ARMA model
[14].

A(z"Ny(t) = B(z"Nult) +d(t) )
Az Y =14a127 +agz™? +azz™3 2)
B(zil) =brz Y4 byz 2+ b33, 3)

The variables y(t), u(t) and d(t) are the system output, system
input and white noise respectively. Equation (1) is rewritten in
a form suitable for identification as

y(t) =0T (1) V(t) +d() )
where
ﬂ(t) = [a1 ag as bl b2 b3] (5)

is the parameter vector (regression coefficients) and (6), shown
at the bottom of the page, is the measurement variable vector.

III. RBF NETWORK IDENTIFICATION

The RBF model [13] shown in Fig. 2 is used to identify the
ARMA parameters given in (5). It consists of two layers: a
hidden layer consisting of radially symmetric basis functions
and a linear output layer. The hidden layer nodes consist of a

Weights 1

yin w_ (bias)
¥{t-2) 0
ye-3) Y(O=F (y(t-i), u(t-i)
—_—
u(t-1)
u(t-2)
u(t-3) O
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Fig. 2. Radial basis function network model.

parameter vector called centers. Each node calculates the Eu-
clidean distance between the center and the network input vector
and the result is passed through a Gaussian function

P(ar) = e /", %

The overall input-output response of the RBF network is
given by

al 2 — call?
y:wo+z_:1wnexp <—p0—2n>. 8)

In (7) and (8), x), is the input vector, w, is the biasing term, w,
is the weight between the hidden nodes and the output, ¢, is the
center of the hidden node, o is the width of the hidden node,
N the number of hidden nodes and ¢(.) denotes the Gaussian
function.

The topology of the RBF network is very similar to the two
layer perceptrons [13], the main difference being the character-
istics of the hidden nodes. It is shown in [15] that any contin-
uous function can be uniformly approximated to an arbitrary
accuracy by an RBF network and it is shown in [16] that RBF
exhibits the best approximation property confirming the impor-
tance of this architecture.

Many algorithms are available for training the RBF (finding
RBF centers and weights) [13], [17]. For on-line identification
using RBF, it has been also found that updating of RBF cen-
ters and weights improves both the modeling capability and the
tracking property [17].

In this work, the learning algorithm described in [18] is used
for updating the centers and weights simultaneously during both
off-line training and on-line updating. The RBF hidden nodes
are created one at a time. The following steps are repeated until
the network’s mean squared error is minimized.

1) The input vector with the greatest error is found after each
cycle of presentation.

2) A hidden node is added with center equal to that vector.

3) The linear weights are redesigned using Widrow—Hoff
[18] learning algorithm. Steps 1-3 are repeated until the
error is minimized.

The Widrow—Hoff learning algorithm [18] for calculations of

weights is summarized below:

U(t) =[-y(t=1) —y(t-2)

—y(t—3)

ult—1) u(t—2) u(t-3)]" (6)
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* The weight equations

W(n +1) =W(n) + 2ae(n)x? (n)
wo(n + 1) =wo(n) + 2ae(n) )

where « is the learning rate.

The learning rate, «, decide the speed of convergence
of the iterative procedure. If « is large, learning occurs
quickly, but if it is too large it leads to instability and the
errors may even increase. To ensure stable learning, the
learning rate is chosen as less than the reciprocal of the
largest eigenvector of the correlation matrix of x7 x [18].

* The output error criterion (mean-squared error (MSE) per-
formance index) is given by the following equations:

MSE = %;ew - %;@(t) —y(H)? (0

The RBF represents a NARMAX model [17]. To obtain the
linear parameters (cf. (5)) of the standard ARMA model, the
output of the RBF, y(t) = f(y(t — ©),u(t — 7)), is linearized
using the Taylor series expansion and retaining only the linear
term

dy 0

= —_— —_— .. y —_— .- ..
Ay_ay(t—l)Ay(t 14+ Au(t—1)4---.

ou(t — 1) an

The partial derivative terms, [0y /0x;] are the elements of the
RBF network Jacobian [J,]| and are given by

dy (Cimn —X;) N xi—cin )2
o = 2T exp (—Z (T) ) .12

=1

N represents the total number of hidden nodes. n is the node
number.

The process of linearizing the NARMAX model of RBF is an
important point, for by linearizing it is possible to apply linear
analysis control methods such as the PS control technique to
obtain the control signal. The PS control technique is described
in Section IV.

For the studies described in this paper, the active power de-
viation (AP.), of the generating unit is sampled at the rate of
20 Hz and is used as input to the stabilizer (y = A P.) (cf. Figs. 1
and 2). For off-line training of the RBF identifier, data was col-
lected at selected operating conditions in the range of 0.3 pu to
1.1 pu power output and 0.7 pf lag to 0.9 pf lead. The distur-
bances used were input torque reference disturbances, voltage
reference changes, and a three-phase to ground fault.

The off-line training yields 17 hidden nodes in the RBF net-
work. After the off-line training, the network is further updated
on-line during every sampling period making it an adaptive ap-
proach.

As the system undergoes only a small change if viewed under
one sampling window (50 ms) during on-line identification and
the error remains well below the MSE, the RBF centers do not

-
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Fig. 3. Sum squared variation of RBF weights during a three-phase to ground

fault.

add up during on-line identification. Only the linear weights
governed by (9) are updated to achieve on-line tracking. This
provides additional benefit as the size of the RBF remains within
reasonable limits during on-line identification and the real-time
calculation needs can be met.

The generating unit parameters when scaled into pu values
fall under a narrow range and differ only slightly from one
generating unit to another. Therefore, RBF-Identifier does not
need off-line training for a new setup. Instead, the off-line
values of centers and weights of the RBF-Identifiers can be
directly adopted for a new generating unit. This is favorable
from the practical point-of-view as it alleviates the need for
off-line training whenever the APSS is used on a new gener-
ating unit. Slight mis-matches that can occur when it is ported
to a different unit is taken care of in the first few iterations of
on-line adaptation. Such an advantage does not exist for a CPSS
whose parameters have to be re-tuned whenever it is applied to
a new unit.

Fig. 3 shows the variation of the sum of RBF linear weights
squared, with on-line updating, during a three-phase to ground
fault applied at 1.0 s at the middle of one transmission line.
The fault is cleared 50 ms later by opening the breakers at both
ends. The initial operating conditions are 0.7 pu active power
delivered to the bus at 0.85 pflag.

The RBF centers find local approximations to different por-
tions of the input space. Thus the RBF is locally responsive
to small disturbances and is suitable for incremental updating
of the weights without losing generalization capability. Thus
the RBF is easier to train than feed-forward NNs which use
global generalization. Another advantage of RBF is its simpler
topology over feed-forward NNs which may require more than
one hidden layer. Consequently, designing the RBF is faster
and it is capable of faster learning than feed-forward networks.
Moreover, when the NNs are used to solve the nonlinear regres-
sion problems, a linear output layer is desirable and hence the
RBF is the preferred choice.
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Fig. 4. Closed-loop system block diagram and the pole-shifting (PS) process.

IV. ADAPTIVE POLE-SHIFTING (PS) CONTROLLER

Once the system model is identified as in (1), the control
signal can be calculated based on this model. In this paper, the
self-optimizing PS control algorithm described in [14] is em-
ployed to generate the control signal. The PS process is briefly
described next.

For the system modeled by (1), assume that the feedback loop
has the form [cf. Fig. 4(a)]

—2 = _2F J (13)

From (1) and (13) the closed-loop characteristic polynomial
T(2~"') can be derived as

ADWFEY+BEGEE)=T(E"). (14

Unlike the pole-assignment (PA) algorithm, in which T'(z 1)

is prescribed [19], the PS control algorithm makes 7'(z~!) take

the form of A(z~!) but the pole locations are shifted by a factor
a, i.e.,

(15)

In the PS algorithm, «, a scalar, is the only parameter to be de-
termined and its value reflects the stability of the closed-loop
system. Supposing A is the absolute value of the largest charac-
teristic root of A(z~1), then cv.\ is the largest characteristic root
of T'(2~1). To guarantee the stability of the closed-loop system,
a ought to satisfy the following inequality (stability constraint):

1 1
——<a< -,

A A (16)

The PS process is presented schematically in Fig. 4(b). It can
be seen that once T'(z~1) is specified, F'(z~1) and G(2~1) can
be determined by (14), and thus the control signal u(¢) can be
calculated from (13).

To consider the time domain performance of the controlled
system, a performance index .J is formed to measure the dif-
ference between the predicted system output, §(¢ + 1) and its
reference, y,.(t + 1)

J = E[j(t + 1) — y.(t + D]*. (17)
E is the expectation operator. (¢ + 1) is determined by system
parameter polynomials A(z~1), B(z~!) and past y(#) and u(t)
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Fig. 5. Stability test for the PS control: pole-pattern for 7'(z=*).

signal sequence. Considering that u(¢) is a function of the pole-
shifting factor «, the performance index .J becomes

minJ = F[AGz"), Bz, u(t), y(t), vy, (£ + 1)), (18)

In (18) F[.] denotes function. The pole-shifting factor « is the
only unknown variable in (18) and thus can be determined by
minimizing J.

Constraints

When minimizing J(¢ + 1, ), it should be noted that « will
be subject to the following constraints.

1) The stabilizer must keep the closed loop system stable.
It implies that all roots of the closed-loop characteristic
polynomial (A(az~1)) must lie within the unit circle in
the z-plane [cf. (16)].

2) The control limit should be taken into account in the
stabilizer design to avoid servo saturation or equipment
damage. The optimal solution of « should also satisfy the
following inequality (control constraint):

Umin S u(t7a) S Umax- (19)

The pole-patterns of 7'(z~') are shown in Fig. 5 for the three-
phase fault described in Section III. Fig. 5(a) shows the pole-
patterns before the application of control. Since two poles map

outside the unit circle, the system is in an unstable state. Fig. 5(b)

shows the pole-pattern after the PS control is applied. Since all

the poles lie within the unit circle, the closed-loop system is
stable. It shows that the PS control assures the stability of the

closed-loop system and also optimizes the performance given
by (18).

V. SIMULATION RESULTS

Performance of the APSS with the proposed RBF identi-
fier and the PS feedback control system is investigated on a
synchronous generator connected to a constant voltage bus
through two transmission lines (Fig. 1). A nonlinear sev-
enth-order model is used to simulate the dynamic behavior of
the single-machine infinite bus power system [20]. The differ-
ential equations used to simulate the synchronous generator
and the parameters used in simulation studies are given in the
Appendix [12]. An IEEE Standard 421.5, Type STIA AVR
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Fig. 6. Response to a 0.05 pu step increase in torque and return to initial
conditions under peak load.

and Exciter Model and an IEEE Standard 421.5, PSS1A Type
CPSS [21] are used in simulation studies. The active power
deviation, A P, (k), is sampled at the rate of 20 Hz for parameter
identification and control computation. Studies performed with
various sampling rates show that the performance is practi-
cally the same for a sampling rate in the range of 20-100 Hz.
Sampling frequencies above 100 Hz are of no practical benefit
and the performance deteriorates for sampling rates under 20
Hz. A sampling rate of 20 Hz is chosen to make sure that there
is enough time available for updating the RBF weights and
control computation. AP, is used as an input to the APSS
instead of Aw as it is readily available as an output signal in
commercial AVRs. The control output is limited to 0.1 pu.
The performance of the proposed APSS is shown under the
following test conditions.

A. Peak Load Conditions

In this test, the generator is operating at 0.97 pu power, 0.97 pf
lag, 1.075 pu terminal voltage. This gives a generator VA loading
of 1.0 pu.

Under the above conditions, a 0.05 pu step increase in torque
reference is applied at 1.0 s and then removed at 5.0 s. The CPSS
parameters were tuned for 1.0 pu VA loading using the tuning
procedure described in [22]. The parameters of the CPSS were
then kept unchanged for all the tests described in this paper.

The power angle (6) response of the APSS, CPSS and the
open-loop (without stabilizer) are shown in Fig. 6. It can be seen
from the figure that the performance of the two is very close.

B. Light Load Conditions

With the system operating under a light load condition of
0.5 pu power at 0.94 pf lag, 1.075 pu terminal voltage, a 0.15
pu step increase in input torque reference is applied. The distur-
bance is large enough to cause the system to operate in a non-
linear region. System response for these nonlinear conditions is
shown in Fig. 7. The APSS shows the ability to adapt to a new
operating condition and give good performance results.

0.6 T T T T T T

-------- OPEN
---  CPSS
——  APSS
0.55 1
0.5 B
K
2045 ]
w
0.4 1
035 J
0.3 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Fig.7. A 0.15 pu change in torque and return to original condition in light load
test.

0.54 T T T T T T T T T
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APSS | |
K
g
<
048} B 1
047 . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
Time, s
Fig. 8. Response to a 0.02 pu step decrease in reference voltage and return to

initial condition.

C. Voltage Reference Change

In this test, the operating condition is 0.60 pu power and
0.95 pf lag and 1.075 pu terminal voltage. A 0.02 pu decrease
in voltage reference is applied at 1.0 s and removed after 5
s. The results are shown in Fig. 8. In the open loop system
without any PSS, the system oscillates before stabilizing to the
steady-state value. This is because the system stability margin
decreases as the reference voltage drops for a certain active
power output. It can be seen from Fig. 8 that the oscillations
are effectively damped by APSS for both reference voltage de-
crease and increase.

Fig. 9 shows the V; response. The results show that the ter-
minal voltage (V}) response is not compromised by using a PSS
(a difference at the third decimal place) as the stabilizers es-
sentially focus on damping the power oscillations in the power
system [cf. (17)].
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Fig. 10. Response to a 0.20 pu step increase in torque under leading power
factor conditions.

D. Leading Power Factor Conditions

When the generator is operating at a leading power factor,
it is a difficult situation for the controller because the stability
margin is reduced. However, in order to absorb the capacitive
charging current in a high voltage power system, it may become
necessary to operate the generator at a leading power factor. It s,
therefore, desirable that the controller be able to guarantee stable
operation of the generator under leading power factor condition.

With the generator operating at a power of 0.7 pu with 0.96
pflead, 0.95 pu terminal voltage a 0.2 pu step increase in torque
reference was applied. The results given in Fig. 10 show that the
oscillation of the system is damped out rapidly and demonstrates
the effectiveness of the APSS to control generator under leading
power factor operating conditions.

E. Fault Test

To verify the behavior of the APSS under transient conditions,
a fault is applied to the system. The fault conditions are 0.5 pu

0.35 T T T T T

3, rad

0 I 1 L 1 I I L I L
0 1 2 3 4 5 6 7 8 9 10

Time, s

Fig. 11. System response to a three-phase to ground fault at the middle of one
transmission line.

power, 0.93 pf lag. The line is restored after 5.0 s by reclosing
the circuit breakers at both ends.

The results given in Fig. 11 show that APSS minimizes the
deviation of power angle of the generator after the fault.

VI. CONCLUSIONS

Simulation results show that the proposed APSS has very
good damping characteristics for different operating conditions
and disturbances. The proposed APSS has the following advan-
tages because of RBF modeling and PS feedback.

* The Gaussian functions in RBF provide local approxima-
tions. Hence the network is locally responsive to small
disturbances and is suitable for incremental training of
the weights without losing generalization capability. The
feed-forward networks use global generalization and are
less suitable for on-line updating of weights.

* The RBF stores “a priori” knowledge because of off-line
training and can be updated with less computations. These
properties make it attractive for real-time applications.

* The RBF-Identifier does not need off-line training for
a new generating unit. This is favorable from practical
point-of-view as it alleviates the need for off-line training
whenever the APSS is used on a new generating unit. To
remain fully effective, the parameters of a CPSS have to
be re-tuned whenever it is applied to a new unit, or the
system configuration changes.

* The RBF is a NARMAX model and hence is more suit-
able to represent the nonlinear nature of power systems.
The NARMAX model is transformed into a linear model
(ARMA) every sampling period for use in the PS con-
troller. Thus a difficult nonlinear control problem is con-
verted into an easier linear regression problem.

* The PS controller moves the unstable poles inside the unit
circle in the z-plane and the control is calculated so as
to optimize the output performance. The robustness and
closed-loop stability condition would not be possible if a
neuro-controller is used instead.
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Fig. 12.  AVR and exciter model.

The effectiveness of the RBF identifier based APSS in
damping local and inter-area mode oscillations on a multi-ma-
chine power system was presented in [23]. Experimental results
using the proposed APSS on a physical model of a power
system have been documented in [24] and will be reported in
detail shortly.

APPENDIX
SYSTEM MODEL AND PARAMETERS

1) Generator

5 = wWow
wo
2H
Ny =g + Taiqg + wolw + 1)A,
}\q =y + Taly — wo(w + 1)Ag

w=

(T + 9+ Kaq6 = T.)

}\f =€f — Tfif
Aed = — Thdira
/.\kq = — quikq

Ad = (Lmd + la)ia + Lmdira + Limaty

Aked = Lmata + Liaird + Lmat ¢
A = Lundiq + Loaira + Lyis
Ag = (Limg +1a)ia + Lingirg

Mg = Lingia + Liging.

2) Transmission network
Vg =V SIN O + Telqg — Telqg
Vg =V COSO + Telg + Teld.

3) IEEE standard type ST1A AVR and exciter model,
Fig. 12.
4) Governor transfer function

g = |:a+m:| 5

5) IEEE standard PSS1A type conventional PSS, Fig. 13.

Vstmax
o ST, 1 (1+sT)(1+sT,)
- b K > =P
1+sTy L+sTy| | 1TAs+AS? | (1+sT,)(1+sT,) Vpss
Vstmin —l
Fig. 13. IEEE standard PSS1A power system stabilizer.

6) Parameters used in the simulation studies

re =0.007 Ty = 0.000 89 Tre = 0.023
e = 0.023 zq = 0.743 rqg = 1.24
Tma =1.126 g =0.626 1z, = 1.33
Trq = 1.1500 Tq = 0.652 H = 3.46
K; = —0.027 ry = 0.05 xr; = 0.3
Re =00 Xo=00 Ke=008
Tc =1.0 Ts = 10.0 Tc1 =0.0
T =0.0 T4 =0.0 K4 =190.0
Tp=10 Kp=005 Tp=004
Vivan = — 999 Vivax = 999 Vanmax = 999
Vamin = — 999 Vemax = 999 VeaMmmy = —999
VgL = —999  Vopr = 999
a= —0.00133 b=-0.17 T, =025
T, =0.10 T =0.01 T35 =0.10
T, =0.01 Ts = 2.85 T = 0.005
A =0.0 As = 0.0 K, =0.02
Vsrymin = — 0.1 Vsrmax = 0.1

All resistances and reactances are in per unit and time
constants in seconds.
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